
Abstract # 445: A next generation TEAD inhibitor with refined isoform specificity for superior safety & efficacy Deepavali Chakravarti, Selvi Kunnimalaiyaan, Jill Olson, Erkan Baloglu, Andrew Morley, Sharon Shacham and Florian Muller (fmuller@sporosbio.com) Sporos BioDiscovery, @JLABS Suite 201, 2450 Holcombe Blvd, Houston, TX 77021, USA

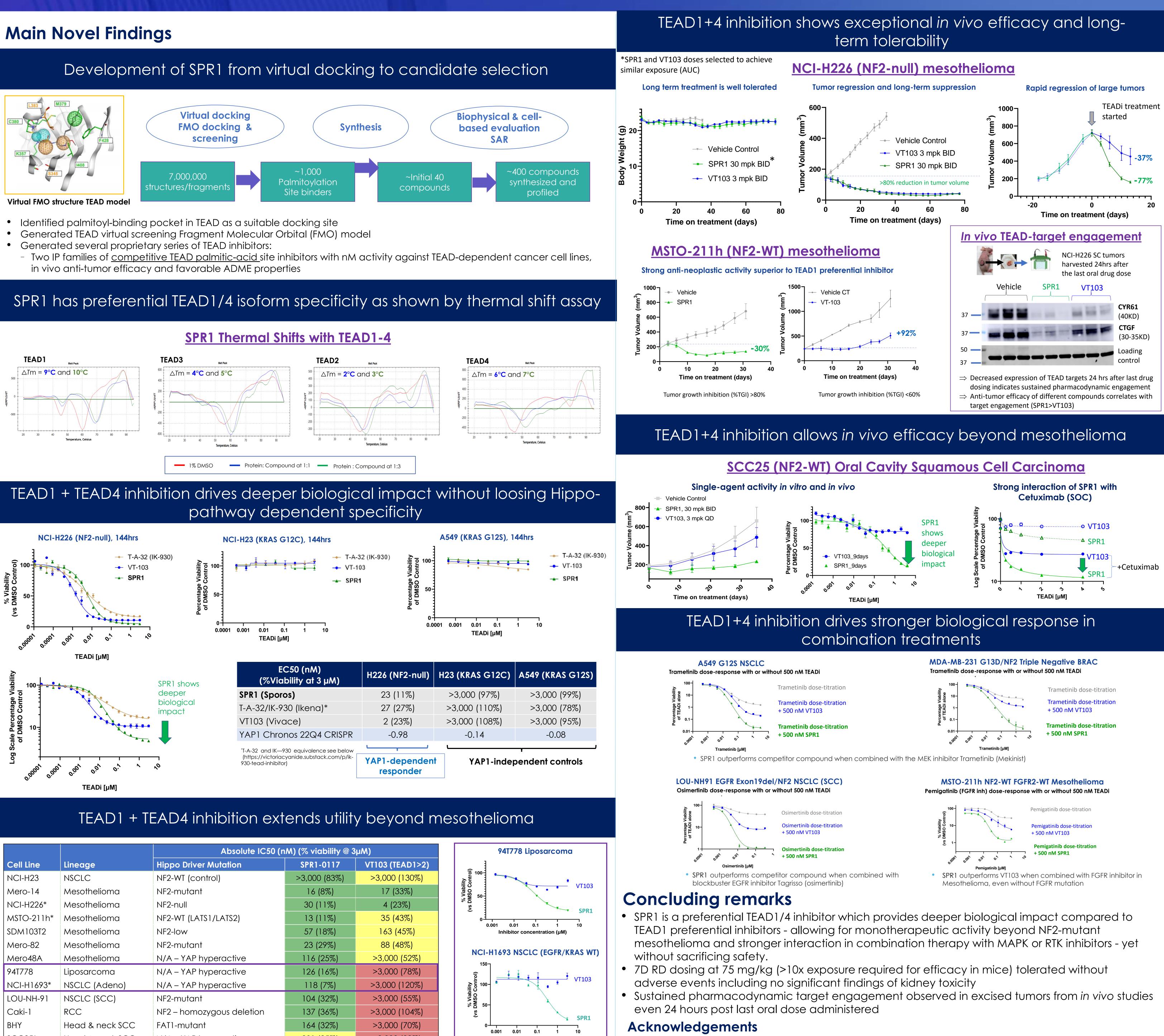
Abstract

- The Hippo pathway is a key regulator of cell proliferation and oncogenesis not yet extensively targeted in precision oncology. It is executed by the YAP1/TAZ co-activators and the TEAD family of transcription factors, which consists of four paralogs (TEAD1-4).
- Sporos BioDiscovery has developed optimized novel inhibitors that reversibly bind to the palmitoylation site of select TEAD paralogs including TEAD1 and TEAD4, to maximize efficacy and minimize toxicity.
- Sporos's bioinformatic analyses identify TEAD2 and TEAD3 inhibition as likely undesirable due to paradoxical adverse stimulation of cell proliferation and kidney toxicity, respectively.
- SPR1-0117 (SPR1) is a TEAD1/4 preferential inhibitor that offers with: (i) low nM, single-agent activity against multiple TEAD-dependent cell lines in vitro including several non-mesothelioma cell lines without any obvious lesions in the upstream components of the Hippo pathway such as NF2. (ii) strong interactions with inhibitors of the MAPK pathway and its upstream activators, such as RTKs. The potency of SPR1 (TEAD1/4 inhibitor) both as monotherapy and in combination with MAPK pathway inhibitors is superior to that of the high selectivity TEAD1>TEAD2-inhibitor (VT103) (iii) activity against multiple tumor models in vivo with tumor regression observed in large established tumors. (iv) favorable ADME profile and safety profile including no renal findings in 7D RD rat non-GLP toxicity studies.
- In sum, SPR1 presents monotherapy opportunities in ultra-responder populations based on internal bioinformatic insights, while broader potential exists as an adjuvant for precision oncology targeted therapies, particularly within the MAPK pathway and its upstream activators.

Background

TEAD isoform inhibitory specificity as a key for maximizing efficacy and minimizing toxicity

- δ specific inhibitors FDA approved)
- in the clinic and limit dosing


	Mouse Knockout Phenotype	Conditional knockout	Oncfusions in TCGA	DepMap Cell Line CRISPR Dependency
TEAD1	Lethal E12	Lethal	9	-0.22
TEAD2	None	ND	2	0.02
TEAD3	Kidney	ND	1	-0.28
TEAD4	Lethal E3	None	9	-0.19
YAP1	Lethal	Lethal	23	-0.32
WWTR1	Lethal P21	Lethal	8	-0.39

Target profile: TEAD1/TEAD4>TEAD3>>>TEAD2

- proliferation

%Identity with TEAD1 : p38 binding D domain (2): Phosphorylation

Clinical results with many high-profile oncology targets (e.g. PI3K) initially proved disappointing due pan-isoform inhibitor toxicity, which was remedied by isoform-specific inhibitors (Only PI3Ka and

• Four TEAD family members with redundant and unique functions

Genetic and pharmacological data strongly indicate that inhibition of specific TEAD family members will likely be deleterious

Sporos wet-lab and bioinformatic analysis has identified which TEAD paralogs are most critical to inhibit for anti-tumor activity and which to avoid for minimizing toxicity

- **TEAD1:** Inhibitor binding required to block inhibition

TEAD2: Inhibition associated with adverse stimulation of

- TEAD3: Inhibition further restricts proliferation in combination with TEAD1 but is also a potential driver of kidney toxicity

- **TEAD4:** Most similar to TEAD1; Inhibition augments anti-proliferation in combination with TEAD1 not associated with deleterious effects

Cell Line	Lineage	Hippo Driver		
NCI-H23	NSCLC	NF2-WT (cont		
Mero-14	Mesothelioma	NF2-mutant		
NCI-H226*	Mesothelioma	NF2-null		
MSTO-211h*	Mesothelioma	NF2-WT (LATS		
SDM103T2	Mesothelioma	NF2-low		
Mero-82	Mesothelioma	NF2-mutant		
Mero48A	Mesothelioma	N/A – YAP hy		
94T778	Liposarcoma	N/A – YAP hy		
NCI-H1693*	NSCLC (Adeno)	N/A – YAP hy		
LOU-NH-91	NSCLC (SCC)	NF2-mutant		
Caki-1	RCC	NF2 – homoz		
ВНҮ	Head & neck SCC	FAT1-mutant		
SCC25*	Head & neck SCC	N/A – YAP hy		
*In vivo efficacy tested and confirmed				

We thank R. Nir (SBH sciences) and B. Hardwick, A. Buckingham and J. Agwenge and R. Mistry (O2h) as well as Xing Hai (WuXi) for excellent technical support and Lauren Hopfer for preparation of the poster.

